Relating the annihilation number and the total domination number of a tree

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating the annihilation number and the 2-domination number of a tree

A set S of vertices in a graph G is a 2-dominating set if every vertex of G not in S is adjacent to at least two vertices in S. The 2-domination number γ2(G) is the minimum cardinality of a 2-dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the nondecreasing degree sequence of G is at most the number of edges in G. The conjectu...

متن کامل

bounding the rainbow domination number of a tree in terms of its annihilation number

a {em 2-rainbow dominating function} (2rdf) of a graph $g$ is a function $f$ from the vertex set $v(g)$ to the set of all subsets of the set ${1,2}$ such that for any vertex $vin v(g)$ with $f(v)=emptyset$ the condition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled, where $n(v)$ is the open neighborhood of $v$. the {em weight} of a 2rdf $f$ is the value $omega(f)=sum_{vin v}|f (v)|$. the {em $2$-r...

متن کامل

bounding the domination number of a tree in terms of its annihilation number

a set $s$ of vertices in a graph $g$ is a dominating set if every vertex of $v-s$ is adjacent to some vertex in $s$. the domination number $gamma(g)$ is the minimum cardinality of a dominating set in $g$. the annihilation number $a(g)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $g$ is at most the number of edges in $g$. in this p...

متن کامل

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

متن کامل

Bounding the Domination Number of a Tree in Terms of Its Annihilation Number

A set S of vertices in a graph G is a dominating set if every vertex of V − S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we show that for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2013

ISSN: 0166-218X

DOI: 10.1016/j.dam.2012.09.006